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PHYSICAL CHEMISTRY 3 

CRYSTAL  STRUCTURE 

TYPES OF SOLIDS  

solids are of two types : (a) Crystalline solids; also called true solids    
                                            (b) Amorphous solids 
A crystalline solid exists as small crystals, each crystal having a characteristic geometrical shape. In a 

crystal, the atoms, molecules or ions are arranged in a regular, repeating three-dimensional pattern 

called the crystal lattice. Sugar and salt are crystalline solids. 

An amorphous solid (Gr amorphous = no form) has atoms, molecules or ions arranged at random and 

lacks the ordered crystalline lattice. Examples are rubber, plastics and glass. In their disordered 

structure, amorphous solids resemble liquids. Thus glasses are to be regarded as super-cooled or highly 

viscous liquids. The liquid nature of glass is sometimes apparent in very old window panes that have 

become slightly thicker at the bottom due to gradual downward flow 

                 

                        Crystalline solid                                  Amorphous solid 

 

TERMINOLOGY OF CRYSTALLINE STATE  

(i) Crystallography: The branch of science which deals with the study of structure, 
geometry and properties of crystal and crystalline substances is known as 
Crystallography. 

(ii) Crysral faces: The crystals of a substance bound by plane surfaces are called faces. 
(iii) Edges: The point of intersection of two adjacent faces is called an edge. 
(iv) Interfacial angle: The angle between two intersecting faces is known as interfacial angle. 

  



 

LAWS OF CRYSTALLOGRAPHY 

Crystallography is based on three fundamental laws. 

(i) Steno’s Law of constancy of interfacial angles: This law states that angle between adjacent 
corresponding faces is inter-facial angles of the crystal of a particular substance is always constant 
inspite of different shapes and sizes and mode of growth of crystal. The size and shape of crystal depend 
upon the conditions of crystallisation.  

(ii) Hauy’s Law of rational indices: This law states that the ratio of intercepts of different faces of a 
crystal with the three axes are constant and can be expressed by rational numbers that the intercepts of 
any face of a crystal along the crystallographic axes are either equal to unit intercepts (i.e., intercepts 
made by unit cell) a, b, c or some simple whole number multiples of them e.g., na, n' b, n''c, where n, n' 
and n'' are simple whole numbers. The whole numbers n, n' and n'' are called Weiss indices. 

Let OX,OY and OZ represent the three crystallographic axes and let ABC be a unit plane. The unit 
intercepts will then be a, b and c. According to the above law ,the intercepts of any face such as KLM, on 
the same three Axes will be simple whole number multiples of a,b and c respectively.  

 

(iii) Law of constancy of symmetry: According to this law, all crystals of a substance have the same 
elements of symmetry is plane of symmetry, axis of symmetry and centre of symmetry. 

MILLER INDICES 

 We know that crystal lattice consists of unit cells arranged in parallel planes. Thus each crystal plane lies 
parallel to the crystal face as also to the unit cell face. These planes cut the three axes along the three 
crystallographic axes (OX, OY, OZ). Hauy proposed that a given crystal plane could be described in terms 



Any other plane 

of intercepts along the axes (Law of Rational intercepts). The reciprocals of these intercepts are small 
whole numbers. These numbers, h, k and l are called Miller indices after the name of the British scientist 
W.H. Miller. Thus Miller indices of a plane may be defined as the reciprocals of the intercepts which the 
plane makes with the axes. 

For illustration, let us consider a crystal system with the axes OX, OY and OZ. In the below figure(a) ABC 
represents a unit cell surface while LMN in Figure(b) depicts another crystal plane under study. The 
intercepts of the unit cell plane are OA, OB and OC which have the lengths a, b and c respectively. The 
intercepts of the plane under study are OL, OM and ON. These can be expressed as multiples of the 
intercepts a, b, c, i.e., la, mb and nc. Here l, m, n are either integral whole numbers or fractions of whole 
numbers. The reciprocals of these numbers are written together in brackets (h, k, l) to give the Miller 
indices of the plane under study. 

 

                                                                   

(a)A unit cell plane intercepts the axes to give intercepts a,b and c                    (b) Any other plane intersects the axes to give intercepts                                    

                                                                                                                                                                      Equal to la, mb and nc 

How to Find Miller Indices? 

(1) Write the intercepts as multiples of a, b, c, say, la, mb and nc.  
(2)  Take reciprocals of l, m, and n,  

(3)  Clear fractions to get whole numbers h, k, l,  

(4)  Miller indices of the plane are (h, k, l). 

SOLVED PROBLEM 1.   Determine the Weiss and Miller indices for a plane when the intercepts 

along the axes are (i) 2a, 3b and 2c and (ii) a, -2b, 3c 

SOLUTION (i)  The unit cell intercepts are a, b, c  

The intercepts of the given plane are 2a, 3b, 2c  

Weiss indices are 2, 3, 2 

The lengths of the intercepts in terms of unit cell intercepts are 2, 3, 2 

The reciprocals are ½, 1/3,  ½ 

Clear fractions by multiplying with 6 which gives the whole numbers 3, 2, 3  



Thus the Miller indices of the given plane are (3, 2, 3). 

SOLUTION (ii)  Weiss indices are 1, -2, 3 

Miller indices are  6, 3,  2  

SOLVED PROBLEM 2: A face makes intercepts 2a and 3b on the X-axis and Y-axis respectively and 

does not cut the z-axis at all.What are the Weiss indices and Miller indices of the face? 

Solution:  Intercepts 2a, 3b, ∞c 

Weiss indices 2, 3, ∞ 

Miller indices (3,2,0) 

CLOSE PACKING IN CRYSTALS 

The individual atoms in a metallic crystal lattice can be thought of as hard spheres. The spherical 

atoms are packed together in the lattice very efficiently in geometrical arrangements so as to leave 

minimum interspaces. A layer of uniform spheres can be arranged either as in figure (a) or (b). 

Clearly the second of the patterns uses space more efficiently. Here the spheres fit into the hollows 

between the adjacent spheres. Thus the vacant spaces (voids) between the spheres are smaller 

than in the first pattern. The metallic crystals are of the second type i.e., close packing. 

 

As clear from figure (b), each sphere in a closely packed layer is in contact with four others. Thus 

each ball touches six other at the corners of a hexagon. Three dimensional metallic crystals consist 

of closely packed layers stacked one over the other. The spheres forming the second layer fill the 

holes or voids in the first layer and the spheres of the third layer fill the voids in the second layer. 

Depending upon the geometrical arrangements of spheres in the three layers, the close-packed 

metallic crystals are of two types :  

(a) Hexagonal close-packed (hcp) 

 (b) Cubic close-packed (ccp) 

Hexagonal Close-Packed Structure  

The hexagonal close-packed structure of metallic crystals is shown in figure (below). It consists of 

three layers of spherical atoms packed one over the another. The bottom layer (A) and the top 

layer (A) have three spheres in similar orientation. The middle layer (B) consists of six spherical 



atoms. The three spheres in the top and the bottom layer fit into the same voids on either side of 

the middle layer. It is noteworthy that each sphere in the structure is in contact with 12 

neighbouring spheres, six in its own layer, three in the layer above and three in the layer below. 

Thus the coordination number of the close-packed structure is 12. In the overall close-packed 

structure, the layers repeat in the manner ABABAB. 

The examples of metals having hexagonal close-packed structures are Ba, Co, Mg and Zn. 

 

Cubic Close-Packed Structure  

The cubic close-packed (ccp) pattern of a metallic crystal is illustrated in figure (below). Its 

coordination number is also 12. Like the hcp structure, it consists of three layers of spherical atoms 

lying over one another. There are three spheres in the top layer (C), six in the middle layer (B), and 

three in the bottom layer (A). However, the overall ccp differs in structure from the hcp structure in 

respect of the orientation of the three spheres in the top layer. In hcp structure both the top and 

the bottom layers have the same orientation. But in ccp structure, they are oriented in opposite 

directions. Therefore, the three spheres in the top layer do not lie exactly on the spheres in the 

bottom layers. In ccp structure, the layers are repeated in the order ABCABCABC. By turning the 

whole crystal you can see that the ccp structure is just the face-centred cubic structure. Many 

metals including Ag, Au, Ca, Co, Cu, Ni, crystallise in ccp structures. 

 

 

 

 



BRAGG’S EQUATION  

In 1913 the father-and-son, W.L. Bragg and W.H. Bragg worked out a mathematical relation to 

determine interatomic distances from X-ray diffraction patterns. This relation is called the Bragg 

equation. They showed that : 

(1) the X-ray diffracted from atoms in crystal planes obey the laws of reflection.  

(2) the two rays reflected by successive planes will be in phase if the extra distance travelled by the 

second ray is an integral number of wavelengths. 

DERIVATION OF BRAGG EQUATION 

 

Reflection of X-Rays mom two different planes of a crystal. 

 

Figure shows a beam of X-rays falling on the crystal surface. Two successive atomic planes of the crystal 

are shown separated by a distance d. Let the X-rays of wavelength λstrike the first plane at an angle θ. 

Some of the rays will be reflected at the same angle. Some of the rays wil lpenetrate and get reflected 

from the second plane. These rays will reinforce those reflected from the first plane if the extra distance 

travelled by them (CB + BD) is equal to integral number, n, of wavelengths. That is, 

nλ = CB + BD ...(i) 

Geometry shows that 

CB = BD = AB sin θ ...(ii) 

From (i) and (ii) it follows that 

nλ = 2AB sin θ          or         nλ =2 d sin θ 

This is known as the Bragg equation. The reflection corresponding to n = 1 (for a given series of planes) is 

called the first order reflection. The reflection corresponding to n = 2 is the second order reflection and 

so on. 

 



SYMMETRY OF CRYSTALS  

In addition to the angles, another important property of crystals is their symmetry. Symmetry in crystals 

may be due to a plane, a line or a point. Accordingly there are three types of symmetry elements 

associated with a crystal. These are called the Elements of Symmetry. 

(1)   Plane of Symmetry : A crystal is said to have a plane of symmetry if it can be divided by an imaginary 

plane into two equal parts, each of which is the exact mirror image of the other. 

(2)   Axis of Symmetry : An axis of symmetry is an imaginary line drawn through the crystal such that 

during rotation of the crystal through 360º, the crystal presents exactly the same appearance more than 

once. If similar view appears twice, it is called an axis of two fold symmetry or diad axis. If it appears 

thrice, it is an axis of three fold symmetry or triad axis, and so on. 

(3)   Centre of Symmetry: It is a point at the centre of the crystal so that any line drawn through it will 

meet the surface of the crystal at equal distances on either side. It is noteworthy that a crystal may have 

a number of planes of symmetry or axis of symmetry but it can have only one centre of symmetry. 

 

CRYSTAL STRUCTURE 

 The particles (atoms, ions or molecules) in crystals are highly ordered as is evident from their 

geometrical shapes, smooth surfaces and specific interfacial angles. The particles in crystals are 

arranged in regular patterns that extend in all directions. The overall arrangement of particles in a 

crystal is called the Crystal lattice, Space lattice or Simply lattice. 

To describe the structure of a crystal it is convenient to view it as being made of a large number of basic 

units. The simple basic unit or the building block of the crystal lattice is called the Unit cell. 

How to Represent Crystal Lattice and Units Cells ?  

The crystal lattice of a substance is depicted by showing the position of particles (structural units) in 

space. These positions are represented by bold dots (or circles) and are referred to as lattice points or 

lattice sites. The overall shape and structure of a crystal system is governed by that of the unit cell of 

which it is composed.  



A unit cell has one atom or ion at each corner of the lattice. Also, there may be atoms or ions in faces 

and interior of the cell. A cell with an interior point is called the body centered cell. A cell which does not 

contain any interior points is known as the primitive cell. That is, a primitive cell is a regular three-

dimensional unit cell with atoms or ions located at its corners only. 

Parameters of the Unit Cells  

In 1850, August Bravais, a French mathematician observed that the crystal lattice of substances may be 

categorised into seven types. These are called Bravais lattices and the corresponding unit cells are 

referred to as Bravais unit cells. The unit cells may be characterised by the following parameters : 

(a) relative lengths of the edges along the three axes (a, b, c). (b) the three angles between the edges (α, 

β, γ). The parameters of a unit cell can be illustrated as in following figure. Parameters of the seven 

Bravais unit cells are listed in Table 1. 

 

                                         parameters of a unit cell 

TABLE 1.  THE SEVEN UNIT CELLS 

Crystal system Relative axial 
length 

Angles Examples 

Cubic (isometric) a = b = c α = β = γ = 90º Na+Cl–, Cs+Cl–, Ca2+(F–)2, Ca2+O2– 

Tetragonal a = b ≠ c α = β = γ = 90º (K+)2 PtCl6
2–, Pb2+WO4

2–, NH4
+Br– 

Orthorhombic a ≠ b ≠ c α = β = γ = 90º (K+)2SO4
2–, K+NO3

–, Ba2+SO4
2–, Ca2+CO3

2– 

(aragonite) 

Rhombohedral 
(trigonal) 

a = b = c α = β = γ ≠ 90º Ca2+CO3
2– (calcite), Na+NO3

– 

Hexagonal a = b ≠ c α = β = 90º, γ = 120 Agl, SiC, HgS 

Monoclinic a ≠ b ≠ c α = β = 90º, γ ≠ 90º Ca2+SO4
2–, 2H2O, K+ClO3

–,     
(K+)4Fe(CN)64– 

Triclinic a ≠ b ≠ c α ≠ β ≠ γ ≠ 90º Cu2+ SO4
2–. 5H2O, (K+)2Cr2O7

2– 

 



                                                                

                                              Cubic                                 Tetragonal                     Orthorhombic 

 

                    Rhombohedral                                     Hexagonal                                      Monoclinic 

 

                                                                                   

                             Triclinic 

CUBIC UNIT CELLS  

These are the simplest unit cells. These unit cells are particularly important for two reasons. First, a 

number of ionic solids and metals have crystal lattices comprising cubic unit cells. Second, it is relatively 

easy to make calculations with these cells because in them all the sides are equal and the cell angles are 

all 90o. 

 

Three types of Cubic Unit Cells  

There are three types of cubic unit cells : (1) Simple cubic unit cell (2) Body-centred cubic unit cell (3) 

Face-centred cubic unit cell  



 A simple cubic unit cell  is one in which the atoms or ions are occupying only the corners of the cube. 

 A body-centred cubic unit cell has one particle at the centre of the cube in addition to the particles at 

the corners.  

A face-centred cubic unit cell has one particle at each of the six faces of the cube apart from the 

particles at the corners. 

 

How to Compute Atoms or Points in a Unit Cell ?  

In counting the number of atoms (or points) per unit cell, we must keep in mind that atoms on corners 

of faces are shared with adjoining cells. Therefore the number of atoms in a cubic unit cell may be 

computed as follows.  

(1)  Eight unit cells share each corner atom. Therefore the simple cubic unit cell contains the equivalent 

of one atom.  

At each corner we have = 1/8 atom 

At 8 corners we have = 1/8 × 8 = 1 atom 

 (2)  Each face-centred atom is shared by two unit cells. Therefore the face-centred unit cell contains the 

equivalent of four atoms.  

At 8 corners, 1/8 each = 1 atom 

6 face-centred sites, 1/2 each = 3 atoms 

Total equivalent atoms = 1 + 3 = 4 

(3)  A body centred unit cell contains the equivalent of two atoms.  

At 8 corners at 1/8 each = 1 atom 



central unshared = 1 atom 

Total equivalent atoms = 1 + 1 = 2 

 

                               (a)                                                                        (b) 

(a) In the simple cubic cell, each corner atom is shared by 8 cells; (b ) In the face-centred cell, each atom 

in a face is shared by 2 cells. 

Calculation of Mass of the Unit Cell  

Mass of the unit cell can be calculated from the number of atoms in the unit cells. For this multiply the 

mass of one atom by the number of atoms in the unit cell.  

 Thus the mass of one atom = molar mass of the substance/ Avogadro's number 

SOLVED PROBLEM 1. The unit cell of metallic gold is face-centred cubic. (a) How many atoms occupy the 

gold unit cell ? (b) What is the mass of a gold unit cell ?  

SOLUTION :  eight corners at 1/8 atom each = 1 atom 

 six faces at 1/2 atom each = 3 atoms  

∴ 4 atoms occupy the gold unit cell.  

 Mass of gold atom = molar mass /Avogadro's number 

              197 g/mol               1 

   6.023*1023 atoms/mol                        4 

=    8.178 × 10-23 g 

SOLVED PROBLEM 2.  By X-ray diffraction it is found that nickel crystals are face-centred cubic. The edge 

of the unit cell is 3.52 Å. The atomic mass of nickel is 58.7 and its density is 8.94 g/cm3. Calculate 

Avogadro’s number from the data. 

SOLUTION:  Number of atoms in nickel unit cell = 4  



Let Avogadro’s number = N 

Thus the mass of one Ni atom = 58.7 / N 

the mass of one unit cell =4( 58.7 / N ) g 

the volume of one unit cell = (3.52 × 10–8)3 cm3 

the density of nickel cell =  4(58.7/ N) g/(3.52 × 10–8)3 cm3 = 8.94 g/cm3 (given)  

 ∴ N = 6.02 × 1023 

INTERSTITIAL VOIDS OR INTERSTITIAL SITES 

In hcp and ccp arrangement of spheres, some spaces or sites are left vacant. These sites or holes in a 

crystal are called interstitial sites or voids. There are two types of interstitial sites. 

(i) Tetrahedral site or void                                          (ii) Octahedral site or void 

(i) Tetrahedral void    : The empty space among four spheres having tetrahedral arrangement is called 

tetrahedral void or tetrahedral site. 

If r is the radius of the sphere that can be fitted in the void, R is the radius of the sphere constituting 

the void, then for a tetrahedral void,  

r/R = 0.225 

(ii) Octahedral void: The vacant space formed by two equilateral triangles with apices in opposite 

direction is called octahedral void or octahedral site. 

For an octahedral void, r/R = 0.414 

 



 



 



 


