
DATA STRUCTURE THROUGH C LANGUAGE 

 

Typedef 

 In most C projects, the typedef statement is used to create equivalence names for other C 
types, particularly for structures and pointers, but potentially for any type. Using typedef 
equivalence names is a good way to hide implementation details. It also makes your code more 
readable, and improves the overall portability of your product. 

Typedef and Portability  

Typedef is frequently used to improve code portability. To cite a simple example, suppose you 
had a need to declare a data structure that was guaranteed to occupy the same amount of 
memory on every platform. If this structure had integer fields you might be tempted to declare 
them to be either short or long, believing that these types would always translate to two- or 
four-byte integers, respectively. Unfortunately ANSI C makes no such guarantee. Specifically, if 
you declare a field to be type long, it will break when you try to port your code to an Alpha 
running Digital UNIX, where an int is four bytes, and a long is eight bytes. To avoid this problem 
you can use typedef in conjunction with conditional compilation directives to declare integer 
equivalence types; on most platforms the equivalence type for a four-byte field will be long, but 
under Alpha/Digital UNIX it will be int: 

 #if defined( ALPHA ) && defined ( DIGITAL_UNIX )  

typedef int BYTE4_t;  

#else typedef long BYTE4_t;  

#endif  

For the record, a variable or field that needed to be exactly four bytes will then be declared like 
this:  

BYTE4_t field_name; 

Typedef and Structures  

To create a structure variable suitable for describing a street address, and to pass the variable 
to a routine that could print it, you might use code like that shown in Figure 1-1, which explicitly 
declares all structure components using the struct keyword. Normally, however, you would 
declare equivalence names for the address structure using typedef, and then declare structure 
variables and parameters using the equivalence names, as shown in Figure 1-2. Note that, in 
this example, one typedef statement was used to create two equivalence names: ADDRESS_t, 
which is equivalent to struct address_s, and ADDRESS_p_t, which is equivalent to struct 
address_s*. This is a very common technique in modern C usage.  

struct address_s  



{ char *street;  

char *city;  

char *region;  

char *country;  

char *postal_code;  

};  

static void print_address(  

struct address_s *address_info 

 );  

static void print_an_address( void ) 

{  

struct address_s address;  

address.street = “1823 23rd Ave NE”;  

address.city = “Seattle”;  

address.region = “WA”;  

address.postal_code = “98023”;  

print_address( &address ); 

} 

Typedef and Functions  

Recall that the type of a function is a combination of the function’s return type, and the number 
and type of each of the function’s parameters. Typedef can be used to declare an equivalence 
name for a function type, and, subsequently, the equivalence name can be used to declare a 
prototype for a function of that type. One use of this is to reduce repetition when declaring 
many functions of the same type. For example, if you are implementing a standard sort 
algorithm, you will need to define a prototype for a compare function; specifically, a function 
used to determine whether one object is greater than another. A prototype for such a function 
would traditionally be declared like this:  

typedef struct address_s  

{  

char *street;  



char *city;  

char *region;  

char *country;  

char *postal_code; 

} ADDRESS_t, *ADDRESS_p_t;  

static void print_address(  

ADDRESS_p_t address_info );  

static void print_an_address( void )  

{  

ADDRESS_t address; 

address.street = “1823 23rd Ave NE”;  

address.city = “Seattle”;  

address.region = “WA”;  

address.postal_code = “98023”;  

print_address( &address );  

} 

Pointers and Arrays 

 In C, pointers and arrays are very closely related. With only two exceptions, the name of an 
array is equivalent to a pointer to the first element of the array. The first parameter of the 
sort_dates function is declared to be pointer to date structure; the actual call to sort_dates 
passes the name of an array of date_structures as the corresponding argument, and the C 
compiler obligingly converts the name to a pointer. Since a C subroutine can’t determine the 
length, or cardinality, of an array passed as an argument, the second argument to sort_dates 
specifies the length of the array. The two exceptions are that an array name cannot be an lvalue 
(it cannot appear on the left side of the equal sign in an assignment); and that C does not treat 
the name as a pointer when used as the argument of the size of operator. If you use the name 
of an array as an argument of size of, the size of the entire array is computed. This allows us to 
create a very convenient macro which I have called CARD (short for cardinality); this takes the 
size of the array divided by the size of the first element of the array, which yields the total 
number of elements in the array. 

Dynamic Memory Allocation 



Dynamic memory allocation in C is performed using one of the standard library functions 
malloc, calloc or realloc (or a cover for one of these routines). Dynamically allocated memory 
must eventually be freed by calling free. If allocated memory is not properly freed a memory 
leak results, which could result in a program malfunction. 

typedef struct date_s  

{  

short year;  

char month;  

char day; 

} DATE_t, *DATE_p_t;  

static void sort_dates( DATE_p_t dates, int num_dates ); DATE_t 

dates[4] = { {1066, 3, 27},  

{1941, 12, 1},  

{1492, 10, 12},  

{1815, 10, 14}  

};  

. . .  

sort_dates( dates, 4 ); 

The ability to dynamically allocate memory accounts for much of the power of C. It also 
accounts for much of the complexity of many C programs, and, subsequently, is the source of 
many of their problems. One of the biggest problems associated with dynamically allocated 
memory comes from trying to deal with allocation failure. Many organizations effectively short-
circuit this problem by writing cover routines for the dynamic memory allocation routines that 
do not return when an error occurs; instead, they abort the program. 

#define CARD( arr ) (sizeof((arr))/sizeof(*(arr)))  

. . .  

sort_dates( dates, CARD( dates ) ); 

 

Doubly Linked Lists 

 In this section we will examine one of the most common and versatile data structures in data 
processing: the doubly linked list. In designing the VAX, Digital Equipment Corporation 



engineers felt that this type of list was so important that they designed machine-level 
instructions for manipulating them. 

 In addition to learning about doubly linked lists, in this lesson you will begin to learn how to 
formally define data structures, and to encapsulate data structure functionality in modules. 

Methods 

 In this class we will define the following operations that may be performed on a doubly linked 
list, and the elements that belong to a doubly linked list: •Create a new doubly linked list 

 •Create a new enqueuable item 

 •Test whether an item is enqueued 

 •Test whether a list is empty  

•Add an item to the head of a list 

 •Add an item to the tail of a list 

 •Add an item after a previously enqueued item 

 •Add an item before a previously enqueued item 

 •Dequeue an item from a list 

 •Dequeue the item at the head of a list 

•Dequeue the item at the tail of a list  

•Get the item at the head of a list (without dequeing it)  

•Get the item at the tail of a list  

•Given an item, get the following item  

•Given an item, get the previous item 

 •Get the name of a list 

 •Get the name of an item 

 •Destroy an item 

 •Empty a list  

•Destroy a list 

Sorting  



In this section we will discuss sorting algorithms in general, and three sorting algorithms in 
detail: selection sort, bubble sort and merge sort. 

Objectives  

At the conclusion of this section, and with the successful completion of your third project, you 
will have demonstrated the ability to: 

 •Define the differences between the selection sort, bubble sort and merge sort sorting 
algorithms; and  

•Implement a traditional merge sort algorithm. 

Bubble Sort  

The bubble sort algorithm moves sequentially through a list of data structures dividing it into a 
sorted part, and an unsorted part. A bubble sort starts at end of the list, compares adjacent 
elements, and swaps them if the right-hand element (the element later in the list) is less than 
the left-hand element (the element with earlier in the list). With successive passes through the 
list, each member percolates or bubbles to its ordered position at the beginning of the list. The 
pseudo code looks like this:  

numElements = number of structures to be sorted  

for ( inx = 0 ; inx < numElements - 1 ; ++inx )  

for ( jnx = numElements - 1 ; jnx != inx ; --jnx )  

if ( element( jnx ) < element( jnx - 1 ) )  

swap( element( jnx ), element( jnx - 1 ) ) 

Select Sort  

A selection sort looks a lot like a bubble sort. It moves iteratively through a list of data 
structures, dividing the list into a sorted and an unsorted part. The pseudocode looks like this: 

 numElements = number of structures to be sorted  

for ( inx = 0 ; inx < numElements - 1 ; ++inx ) least = inx  

for ( jnx = inx + 1 ; jnx < numElements ; ++jnx )  

if ( element( least ) > element( jnx ) ) least = jnx  

 swap( element( least ), element( inx ) )  

The big difference between a select sort and a bubble sort is the efficiency it introduces by 
reducing the number of swaps that must be performed on each pass through the list. As you 
can see, instead of performing a swap each time it determines that an element is out of order, 
it merely keeps track of the position of the smallest element it has found so far; then, at the 



end of each iteration, it performs exactly one swap, installing the smallest element in the 
correct position in the list. 

 

Mergesort  

The main idea behind the merge sort algorithm is to recursively divide a data structure in half, 
sort each half independently, and then merge the results. Since the data structure needs to be 
split, this algorithm works best with well-organized, contiguous structures such as arrays. To 
mergesort an array, divide the array in half, and independently sort the two halves. When each 
half has been sorted, merge the results into a temporary buffer, then copy the contents of the 
buffer back to the original array. Here is the pseudocode for sorting an array:  

mergesort( array, numElements )  

if ( numElements > 1 )  

lowHalf = numElements / 2  

highHalf = numElements - lowHalf  

array2 = array + lowHalf  

mergesort( array, lowHalf )  

mergesort( array2, highHalf )  

inx = jnx = knx = 0  

while ( inx < lowHalf && jnx < highHalf )  

if ( array[inx] < array2[jnx] ) tempArray[knx++] = 

array[inx++]  

else tempArray[knx++] = array2[jnx++] 

 

 


