ey, W 1 ET TSV O W W

LS hnd V 2Lt ‘ ; 3 t 0 Wlth a VelOCit 4 I/
s from a fixed point = ‘gd Undey
12. (a) A body move from O. Find the time takey, ‘l Ot "
i

. istance T
[)l‘ oducvs an ncceleratmn [t.’l? at a dlsta y th(} ,
8 {

)fj(}“
{

to acquire a velocity 2V. | o
equation of motion is ¥ =

5. S . The i)
[HiNTS. See Art. 2.6 on page 43. 1. o : € ol
this equation is z = A cosh /it + Bsinh /i t and & = A\/pusinh /i ¢t 1 g \/l\lmsthmnq

Att=0,2=0,z=V; A=0and B= V/\/I_‘- o Bhes V(‘OSh\/mVﬁf.
If T be the time when # = 2V. then 2V =V cosh \/uT or, T" = ﬁ COSh\x.)" |
4|

(b) A particle moves with an acceleration which is always towayqg ang
"y

to u divided by the distance from a fixed point O. If it starts from rest 4 A digy
‘a’ from O, show that it will arrive at O in time a\/7/2u. [C.U. B, /B-Sc.m)‘::

[Assume that [ e .dx = 3@]

Answers.

3. mlg/ﬁ\/fﬁ, 4. f = I‘i,f-’ + l—‘,)“l_—,-f"’; %‘3 ft./sec. 7. (a\/msinh VL — Vcosh\/ﬁt)’
(acosh Vitt - %‘- sinh \/ji t). 8. Acceleration = —p/x?. 12. (a) 715 cosh ~12,

B. KINETICS

2.9. Newton’s Laws of Motion

In the previous articles on K. inematics, the different kinds of motions concerning the
geometries of motions (i.e., positions etc. of these motions) have been considered
without entering into the causes which produce these motions. The motions in classical
mechanics concerning the cause and effect are governed by the three laws of Newton.
These laws were enunciated by Newton in his ‘Principia Mathematica’ published in the

vear 1686.

Newton’s Laws of Motion

First Law. FEverybody continues in its state of rest or of uniform motion in a straight
line, except in so far it is compelled by any external impressed force to change that state.

Second Law. The rate of change of momentum of a body is proportional to the
impressed force, and takes place in the direction in which the force acts
Third Law. 1o cvery action there is an equal and opposite reaction
The first law is also known as the ‘Law of Inertiq' The term inertia means the
. . . ks . 7 + €
tendency of a body to continue as it is i.e., to remain ip a state of rest or of unifor™
motion for ever in absence of any external force This law gives ys the qualitative
. -~ s ) s -
definition of a force: i.e.. a force is somethirg which changes or tends to change the
state of rest or of uniform motion of a body in a straight line.

A i
E e
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ANALYTICAL DYNAMICS OF A PARTICLE

‘ ' ) wovides us with
rl‘lN‘ ;\'('(‘U"d ‘("l‘ai\‘(‘s us i q““"t u ot i\"\ ‘h\n““ h\n ‘\l 0 f\\‘ Q“\ Lq ‘.. “‘Il““ ‘.& ““Ilu'\|| ns
a measure of the applied force. The .momentum’ of & hody at any nstant b
the brudnct of its mass and the veloeity at that instant.
P = mf from the Second Law :

of mass 10 produces
{ the second fow we hawe,

To deduce the formula t
‘l!“\i“\‘ [ ] n“(l

If P be the external force which acting on body
acceleration f at any instant ¢, then from the fiest part o

dv
—

d
P o —(me or, PP=Akm:
dt“ » b dt
where m is constant with respect to t and A is the constant of variation,

or, P =kmf, (1)

where %’7 = acceleration = f.
If the unit of force be so ¢
acceleration, i.e., P =1 when m = 1 and f = 1, then from (1), 1 = &1.1, 00

Hence from (1), we have
P = mf. (2)

hosen that it acting on unit mass produces unit
ko= 1,

COROLLARY. If P = 0 i.e., if there is no impressed forve, then ;’f;(nn‘) a0 and henee
muv = constant, i.e., the body moves with constant momentum, In this case, the bhody
moves with constant velocity.

OBSERVATIONS. Left-hand side of the equatiol
and the right-hand side as the ‘effective foree',
apply forces in succession on the same mass and if they
then the forces must be equal. Again, if the same force be applied to two masses, and

if it produces the same acceleration in them, then the masses must be equal. Thus,
mass may be considered as the constant of proportionality between the improssed foree
and the produced acceleration. It also follows from equation (2) that f o P/, e,

acceleration may be defined as the force per unit mass.

Now from the second part of the law, we note that P and f have the same
an external force produces an acceleration in its direction, This is also
if two or more forces act on a body, each force being independent of
Jeration in its direction. This is known as Law of Physical
¢ of forces acting on a bady produces equal
directions, then equation (2) becomes

1 (2) is known as the simpressed foree'
It follows from equation (2) that if we
generate the sume aceeleration,

direction, i.e.,
generalised as,
other forces, produces an acce
Independence of Forces. Thus if a numbe
number of accelerations in their respective

P = me. (3)

where the left hand side of equation (3) ie., v/ is the ‘resultant impressed foree’
and the right-hand side is the ‘resultant effective foree’. From (3), it follows that the

direction of the resultant impressed force and the direction of the resultant acceleration
| m is o scalar. Equation (2) is known

are the same, since Y P and T f are like vectors aig
as ‘the equation of motion'. For a particle moving along a line this equation may be
written ds
m# = the algebraic sum of the forces along the line.
,,,,,,,,, {
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= MOTION IN A STRAIGHT LINE

By ‘the algebraic sum of the forces’ we mean the sum PG i i Proper
signs, the sign being positive when a force is in the sense of = increasing and negatjy,
when the force is opposite to it.

The third law of motion gives us the idea that forces never exist singly, but alwayg
appear in pairs. If one body exerts a force on another, the se?ond also exe’rts an equa
force in the opposite direction. The first of these two forces 1s called Ll.]e ‘action’ anq.
the second one the ‘reaction’. It should be noted that the action and its reaction ¢’
not act on the same body.

Units of Force

In F.P.S. (i.e., Foot-Pound-Second) system, the unit of force is called a Poun.da! and
it is that amount of force which acting on a mass of one pound produces in it an
acceleration of one foot per second per second. §
In C.G.S. (i.e., Cm.-Gm.-Second) system, the unit of force is ca!led a Dyne, and
it is that amount of force which acting on a mass of 1 gm. produces in it an acceleration
of 1 cm. /sec’. : }
' 1 poundal = 30.48 x 453.6 dynes. B
o In M.K.S. (i.e., Metre-kg-second) system, the absolute unit of force is called a
Newton, and it is that amount of force which acting on a mass of 1 kg. produces in-it

3

an acceleration of 1 metre/sec?. ,

Weight . =
The Weight of a body is the force with which the earth attracts the body towards its
centre. '
Due to the attraction of the earth, acceleration of a freely falling body towards the
earth is g. If W be the weight of a body of mass m, then by the second law W = mg
which always acts vertically downwards. ’
We shall now consider the motion in a straight line under the action of various
forces. Let us first discuss the motion in a straight line under the action of constant
forces. ' 2
0 EXAMPLE 1. A mass of 10_5""" falls freely from rest through 10 metres and is then
brought to rest after penetrating 5 cm. of sand. Find the constant resistance of the
sand in gm. weight (C.U. B.A./B.Sc.’TT]
SoLuTION. If v cm./sec. be the velocity just before entering into sand, then

2 _ 2
v"=0"+2¢.1000 [ 10 metres = 1000 cm.]

Let R dynes -be Fhe constant upward resistance of s
when it is penetrating into the sand, and dye ¢ this resista
*f the mass. Then since the mass s brought to rest after

and on the mass of 10 gm-
nce, let f be the retardation
Penetrating 5 cm. of sand,

Y, or, 10f='l)2=200
f = 2009, Cm'/Sec2. Og
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ANALYTICAL DYNAMICS OF A PARTICLE

g irection i8
The resultant force acting on the mass of 10 gm. in the upward dir
(R- 10g) dynes. By Newton's Second law, we have

R—10g = 10f, where f=200g cm./sec.2

R = 10g + 10f = 10(g + f) = 10(g + 200g) = 2010g dynes = 2010 gm. Wt

or,

ressure (or Thrust) of a body resting on a Horizontal Plane which
,Sc.’80;(H)'78]

2.10. P .
Vertically Upwards or Downwards

is Moving
casE 1. Let the horizontal plane be moving vertically upwards wit

ration f-
When a body of mass m is placed on the moving horizontal plane; let R be
wards with the constant

reaction of the plane. As the plane is moving up _
scceleration f, the body is also moving upwards with the same constant acceleration f.
The forces acting on the body are (i) the reaction R vertically upwards and

(ii) its weight mg vertically downwards. Hence he resultant force acting on the body
eleration f in the body. In this

(C.U. B.A./B
b a constant accele-

the upward

is (R— mg) vertically upwards which produces the acc
case, R > mg-
* Hence by Newton’s second law of motion, we have R
R-mg=mf, oI, R = m(g +f). f
By Newton’s third law of motion, the pressure of the 5 1

body on the moving plane is equal and opposite to the
normal reaction R of the plane and hence the pressure P

exerted by the body on the plane is given by
mg

P =m(g+f),
Fig. 2.10

acting vertically downwards.
CasE II. Let the horizontal plane be moving vertically down
acceleration f.

In this case, the body of mass m is moving down- R
wards with the constant acceleration f and the resultant
force acting on the body is (mg — R) acting vertically
downwards. Clearly, mg > R. ’

wards with a constant

Hence by Newton’s second law of motion,
mg—R=mf, or, R =m(g - f). l
mg f
As before, the pressure P exerted by the body on
the plane is given by P = m(g — f), acting vertically Fig. 2.11

downwards.

NOTE. The reaction R is greater than or less than the weight mg of the body according
as {he horizontal plane is moving upwards or downwards. This explains why a man
Testing on an ascending lifts feels himself heavier and on a descending lift feels himself

lighter than his actual weight.
. If the horizontal plane be at rest or moving upwards or downwards with uniform
elocity u, then f = 0 and R = mg. Hence the pressure exerted by the body on the

Plane is also mg.

| .

Scanned with CamScanner



= SN f -4
R RS

5

AR

—

: A et ., o Rt i _
¥ ' - £ 5N \ .f‘ s ot ST e Py e v - : v -?.'q:'o- _‘:‘-:Wm_‘.’“f O A ST
B e : oy R A = s S T e w, % e e Py '
either case! 14. 625 ft. 15. 12 ft./sec. 17. 8 sece. RN e ——

Y ied
~ N e
aats. 7
.

P i g S 3 * e
Ve ATS T naco.

to the verticai Jdiameter.

- B0 7 M ity e £ o
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2.13. Motion of Connected Systems

Let us consider the problems of movin

pulleys. In solving these problems we d
pulleys.

I. Light string. By the words ‘light string’ we mean that the mass of the string
is negligible. Though in reality, howev

: er light a string may be, it has some weight, but
for all practical purposes by the word ‘light string’ we mean that the string is weightless.

Otherwise we call it ‘heavy string’ and its weight should be considered.

II. Inextensible string. By the words ‘inexztensible string' it is meant that

the string is not stretched by applying tension i.e., Hooke’s Law is not applicable in
this case.

g particles connected by strings passing round
efine the f

ollowing terms relating to strings and

III. Light Pulley. By the words ‘light pulley’ it is meant that the weight of
the pulley is negligible. As'in the case of ‘light string’ there is no wexgh?:less pulley in
reality. In case of ‘heavy pulley’ the weight of the pulley should be considered. .

IV. Smooth Pulley. By the words ‘smooth pully’ it is meant that there is.
no friction between the pulley and the string over it. If the pc\lxlleycr1 is not smooth, the

i icti i be considered.
fricti to the friction on the pulley is to dered. N

g 10;;1 ::::epillgclzs connected by a ‘light inextensible’ string passing over a ‘light
smooth’ pulley, it is necessary to make use of the following two facts:

I ticles are hanging vertically on the two. opposite sides of a

When two pa tant are equal in magnitude but

pulley, their velocities and accelerations at any wns
opposite in sense.

Let ! be the length :
portions of the string on two sl
T1 + 22 = | (Constant).

at any instant T1,T2 are the two
ensible, we have

and

ing strin .
of the connecting g As the string is inext

des of the pulley.

R

12184
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MOTION IN A STRAIGHT LINE

Hence, iy 4 gy = 0, or, @y = =dgand &) + @y w0, o, &) = g,
IL  The tension of a string pas

g over g pulley is 4.
throughout the string. o

OT Let p be the mass per unit length of the string undep Consig i
tion. Let us consider the motion of the portion PQ = Ay of tho\~ oy
If possible, let this portion has two unequal tensions 7 and 'l“\t
% at P and Q respectively and let it be moving with an awcoll\‘m:k -
towards the tension 7'+ A7 Honce by the 2nd law of motioy, \“‘uﬁu ‘
AT AT )
pt (T+AT)~T = pAx-f, or, y e pf.
nxl, '

Q+ Now, in the limit when Az — 0 and fml‘n the consideratioy, tha
# +aT the string is weightless i.e., p =0, we have ‘ﬁ =0, ie., Tis constay
T+a NOTE. Since the pulley is smooth, therefore, on passing over

pulley there is no frictional force to alter the tension in the

String o
the other side of the pulley.

Fig. 2.19 Next, let us consider the following simple case of a connecta
system.

2.14. Resulting Motion of a Connected System

Two particles of masses m, and ma(my > my) are connected by a light inextensib
string passing over a light smooth fized pulley, and are allowed to hang freely. To
the resulting motion, the tension of the string and the pressure on the pulley.

[C.U.B.Se. 6

Let A and B be the particles of masses my and mz and C the fixed pulley. Sing

the string is light and inextensible and the pulley is smooth, the :
is the same throughout its length. Let the tension be T

Let at any instant the lengths of the strings from O, the highest point of
pulley, to A and B be z; and z, respectively. Hence the accelerations of m; and
are respectively 7, and #, downwards.

tension in the strin

0 Now, for the motion of the particle my, we have

.

\C/ myiy =myg - 1T.

[Since the effective force is downwards, the downwar &5
force i.e., weight is taken as positive and the upward fore¢
(i.e., tension) is taken as negative]. And, for the motion ¥
the particle m,, we have ;

1
% maiy = myg - T. ( ¥
‘ # Ef:,:-'t-x.

Also, we have S
%
@ | Ty + 2y = the length of the string = constant. ]
Tr+22=0, and # +d9=0, or, #3=—-F1 o0
. 3.2 OR
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. ‘ "’ VALYTICAL DYNAMICS OF A PARTICLE 67
Subtra.cting (2) from (1), we have

m1:i':1 —MpZs = (ml o mz)g,

.z = M1—my O (mi+ms)i; = (my —my)g, (By (3))
T mimpY (4)
Since m; > my; - % 5 : N,
with an acceleration given by (14). and hence the particle m; will move downwards
Also from (3), £, = —%,: he : _ '
acceleration as m;. 1; fience the particle my will move upwards with the same
Again, from (1)
T=mg-—mi =m M1 —m2 2mym
- ™Mg—m;- g=—172
\ Y S e s® fom (@) (5)
. mims
ie, T=

T g which gives the tension in the string.

Since the string pulls the pulley downwards on both sides by a force equal to the

tension in the string; hence pressure on the
’ pulley = the i
- ' 4 Ak ey resultant of two equal like
pa ’ € 2Tl = —= g (6)
mj + mso

\OTE 1. _It follows from (4), (5) and (6) that the acceleration of the masses, tensic;n
in the string and pressure on the pulley are all independent of time i.e., they remain -
constant throughout the motion.

NotTE 2. If P be the pressure on the pulley and W be the sum of the weights of the

particles, then W — P = (m, +m2)g—--ff+%§g = "“";—'mm’}:g > 0 unless m; = m,.
Hence, W > P when m,; # my; i.e., for an accelerated system the pressure on the
pulley is less than the total weight of the particles.

It is to be noted that the relation between the displacements of the particles and
the length of the string must be established to discuss the motion of connected systems.
3 EXAMPLE 1. A string having at its ends two particles of masses 14 lbs. and 7 lbs.
Passes over a smooth pulley. If the string breaks after the motion has continued for 3
‘s, find after what further interval of time the smaller mass comes to its original
Position,

SoLuTION. Before the string breaks the acceleration f of the
) . 14 -7
f=1z7

Let, at the beginning the masses 7 Ibs. and 14 lbs. were
* Aand B and after 3 sefs they are at C and D respectively.

When the string breaks, the smaller mass at C has an ‘
,p‘"“'d\'elocityu-r‘-ft:aff%?':?’? ft/SE'C C
©u=0, t=3] and

32
x 32 = --3— fr../Secz.

£r
@ 3

ey

- —— -

&Y Lk 1:42__1v§_2-‘/32=48&.
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ANALYTICAL DYNAMICS

CHAPTER 1

" WWORK, POWER AND ENERGY

11, Work. -
] ' nt of a body Jor

done by a force acting at a Do (
anylig:tke is the product of the force and the dzsp}llagea?gnt
of \the point of application of the jorce during that time

in 118 OWT direction.

. - = %
A B
A &

AN

‘ t a force P be acting on & body at 4 ip the d.irection
AXLer&aI?y time, and leb A move to B gnr;ing t}lzﬁe mtexz;}.
‘ o the direction 4X, 28 in the first figure, the

It 4B be 2 b stive. 1f the displacement

done=P.AB, and i8 pos ' ]
X.OBrkof A is in & direction opposite to the direetion of P,
d figure, the displacement measured in the

in the secoD
08 I ion ¢ P is— AB, and the work done by the force

direction O _ ]
. here is— P.AB, which 18 negative.

If the displacement AB be in a direction different from
the direction of the force, 8aY,
making an angle 6 with AX as in

the third figure, the displacemenb

P, measured in the -direction of P i8
X AN = AB cos 6, and in this case we
Fig. (iil) ~ get more generally,

Work done by P=P.AB cos 6= AB.P cos 0

= Force % component  of displacement of its point
of application along the line of action of

the force

= Total displacement X component  of the acting
force along the direction of displacement.
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Wote,  ligldantly (he worl done fg positive if ¢ be acute, and
pafnlve if ¢ ho obluse In |mrlaluulhl'. i 0=00% the work done ig
war(, .0, N0 worle 1n done by w» foroe i the resultant displacement
of i polnt of app lloular to the line of aotion of

ljention 1n |_|urpm_u

thi Toron,

[ tho dfgplacomont or it oomponent i in & direotion opposite ¢
worl 16 pid to be done against the force.

Uil of the nobing foren,

Annlyticnlly
It the parblele moves plong o straight line which we
axin from the point @1 b0 the poink g
k done in time ¢ can b

iy toko nB fho @-nxl
In tlno £, pxproneion for the wor

wrltlion panlytionlly n
0y
j I dw,

"
whoro 1" 18 thé pomponont (consb
foroo nobing upon tho particle &

position.
fn the monb gonoral 0nge, it o particle desoribes &
d if I be the component of

grmoobh ourve undor nny foreo an
the foreo nlong tho tangont to the path at any instant and

di he the elemont of tho length along the path described in
an infinitesimal timo dt, then during any interval of time
from tq to te, tho oorresponding gpee descoribed being §i to

Lho totnl work dono 18
Ay t
S Yk da-j ! o dt
"y {1

whether I bo constant or variable. :

n oaso of the motion of & parbicle along & ourve if (z, v)
ha co-ordinabes of the position of the particle referred to
rootangnlnr axos ab any instant and X, Y be the components
(consbant or varinble) of the resultant force acting uwpon
pho parbiclo ab that instant, then as the particle moves from
tho point (@, 71) to the point (2, Vo) OO its path, the total

worl done in
(wa: V)
S (X de+Y du),

(mlv yl)
whero X and I are nob constants, they are usually known

funotions of (@, ¥)-

ant or variable) of th
long the x-axis in any

By
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1'% tnits for mossurement of Worl,

W i 1h foraa of one powndal acting on @ body displaces
ity poimt of wppbioation Hough ons fool in its own direc-
tion, tho ot of maorl dona i defined to b Foot-poundal.
Wl Bs Who Jiritish nhaolute unit of work,

Whim o Jorod syl 1o the welght of ona pound displaces
the yoint 0f applicabion Yrough ons fool in s own direction,
tha worl dond ig dufined Lo ha one Foot-pound.  For instance,
when H Imwh pudses n nngs of one pound vertically upwards
through ono foob, he does work of onae foot-pound against
tha foree of grwyiby, wherens the work dona by the weight
of the holy in this ongo i nogative, and = =1 fti.-lb,

As 1 b, wh =g poundnls, it 18 olenr that
I {,-1h, =y fool-poundanls,

When o force of ong dyne aoting on @ body displaces its
point  0f application  through  ono conlimetre in its own
rsothon, the wmount of worl done 18 called an org. This ig
the w4, sheolubo unit of work,

As this I8 very small, n hlmgar unit of o.g.8., system is
one Joule=107 orgs.

A one poundul = 13800 dynos roughly,

1 foob-poundal = 3048 % 13800 orgs

w 490094 ergs approximately,
] { (
snd 1 lt.-lb.-—"m XJA(;{,U”M' 3.6,y 1'846 Joules noarly.
14, Power,,
When an ayent (sny, & man, or i machine, or an engine)
is doiny work continuously, the rate at which it does work

or umit.of Lime s dofined to bo il power.
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4 ANALYTICAL DYNAMICS

BRITISH UNIT—When an agent is doin
rate of 550 foot-pounds Per second, it 4s
Eorse-power (briefly 1 H.P.).

i C.G.8. UNIT—When
1 Joule (107
Watt.

We can show easily that 1 H.P,
From definition, it follows that
Power = Foree % Velocity,

g work
8a1d to haye

ergs) per second, its power ;g said to be g

=746 Wattg neraly,

|
1°4. Energz. j
Energy of a body 4s ;s capacity for doing work, ’}
There are two kinds of energy that g, body may possess,.}'
namely, Kinetic ang Potential, 1

A moving body, by virtue of its motion, Dossesses g
i doing work. For, if a force be applied
ly, but moves g certain

distance against the force before i

Possessed gn energy,

less, the distance moved by the ho
will be less or greater, and it wil]l be 8een below that the
amount of the work whi

Again, for g body acted on by a given system of fopeeg |
Weé may contemplate g suitable position ag the standarg

position. If the body be displaced from this positjon to
Some other position, in general a certain am

will have to be done against the acting forces.
be allowed to g0 back to the former standard

do in thejr turn the aboy

If the body
POSition, the

Y 1n its displaced bositiop, which
| becomes manifest gg the body is allowed to go back to itg
|

standard position. Thus, g body may possgess energy dye
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WORK, POWER AND ENERGY

(%11

- §o its position. We then formally define the two kinds of
energy as follows :

: f}_(inetic Energy 1S the capacily for doing work, which &

_moving body possesses by virtue of iis moiion, and is measursd
-‘-_-__—___r Il ¢ G
by the work which the body can do againsi any fores applied
to stop it, before its velocity is desiroyed.

‘work, which 1t Dossesses by virlue of iis position or com-
—_— 3 3 = o %
figuraiion, and 15 measured by the amount of work which the

system of forces acting on the body can do in bringing ihe
Body from its present position to some siandard position.

.
¥

)|
i 1'5. The kinetic energy of a body of mass m maving wiih
a velocity v is 3mv® (in absolute units).

d} TImagine & force P to be applied against the direction of

“motlon of the body of mass

t'on moving with & veloeity 2. m =
Lot 2 be the distance advan- @ <«
ced by the body before its

t velocity is destroyed. Then,

I gince the opposing accelera-
" tion produced by the force is P/m, we have

" " 0=0¢%-9(P/m) z, whence, Pz= Imv®.
' Thus, the work done by the body against the ﬁqrce
‘\bafore it comes to rest is mv*®, and this is, by definifion,
| the measure of the kinetic energy of the body:

It may be noted that the E.E. ultimately depe**ca on

t

m and v, but not on P.
| Note1. Tt is seen from above that the unit of energy ig the same
88 that of work in absolute upits (for which P=mf holds) snd

 therefore usually in fool-poundals or e7gs.

\ Note 2, The term Vis Viva is us
- &nergy of a body, so that Vis Viva=mv%,

Z 90

- s D

od to denote {wice ihe Eingic
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; ' 1°6. The Principle of Energy.
| The change in the kin
the work done by the acting

!
— |
etic energy of g body i equal
Sforce.

-
-

dlirscy

. ’ . - .. 1

during the Interval. The acceleration prcduced is ;J

and so |

. P
{ ‘vz=u2+2—'a:.
1t m

M Hence, imy2- zmu? = Px,
‘ Now 3mv*® and 3mu? are respectively the final ard iziti
1

kinetic énergy of the body and Pz represents the work ée
by the acting force, Hence, the required result is preved

————

Analytically, from the equation of motion
P=my c%:, ’

R 3 integrating w. r. to z, between the limits , to Te, if v, ar
o 'vg be the velocities at those points,

! va xa

' andv=JPdm

‘,.,, l_! . 1 Y
N | t.e., %mvg’ = ':15”3012 EP(Q'S '_2'1).

A or, Imv® — imud = Pr, as above,

! Note.

The above result which is sometimes gpoken of 5. Y Enrer;
€qualion” may also be put in the form

i dmat
which may be éxpressed as follows -

The change
Joree,

in Kinetic €rergy jer unil $1CCe it ecual o g3, Qe

i “‘-1
> 3
- - : e
e
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