The Two Slit Experiment

<u>Light and matter</u> are both single entities, and the apparent duality arises in the limitations of our language. Heisenberg

Amar Nath Sil Jogamaya Devi College Kolkata

Introduction

Aim:

The double-slit experiment in order to learn about the concept of wave - particle duality, the cornerstone principle of quantum mechanics.

Objective:

To understand the nature of elementary particles by carrying out the famous double slit *experiment* with <u>sands</u>, <u>light</u> and <u>electrons</u>.

Overview

Thomas Young (1800):

Attempt to resolve whether light is a particle or a wave

•Small size two close slits, produced distinct bands of color separated by dark regions

•Interference patterns.

•Confirm, light were acting like a wave.

Classical Particle Case

Doing same experiment with <u>grains of sand</u> by shifting the slits in 90 degree. Each particle is either going through one slit or the other.

Bullets: Particle Case

Fig: Curves P(x) give the <u>probability densities</u> of a bullet passing through slit and striking the screen at x.

Fig: Curves I(x) give the intensities of the waves passing through slit and reaching the screen at x.

Usual two slit interference pattern

•Different from what we obtained for bullets •There was no interference term

 $I_{12}(x) = I_1(x) + I_2(x) + 2\sqrt{I_1(x)I_2(x)}\cos \delta$

LASER: <u>Wave Case</u>

Interference of light experiment:

Using LASER, single and double slits.

Laser beam through a single slit

Laser beam through a double slit

Electron: Quantum Case

The sum of the patterns with one slit closed at a time is **not** equal to the interference pattern with both slits open!

 $|\psi_1 + \psi_2|^2 \neq |\psi_1|^2 + |\psi_2|^2$

Interference pattern cannot be the result of an electron going through one slit or the other, but being present at both slits!

Only <u>one</u> slit is <u>open</u>

Wave function for electron passing through slit: ψ

Electron is passing through slit 1 or slit 2: Use a spy (Detector)

Summery

Case	Wave function	Counts at Screen
Detector ON:	Ψ_1 or Ψ_2	2 2
Electron is measured to		$ \boldsymbol{\psi}_1 + \boldsymbol{\psi}_2 $
pass through slit 1 or slit 2		
Detector OFF:	$\Psi_1 + \Psi_2$	1 12
No measurements made	• 1 · • 2	$ \psi_1 + \psi_2 $
on electron at slits		1

- Double slit experiment shows wave-particle duality
- Matter waves can be in a superposition of waves at two positions!
- Measurements can disturb the state of a quantum object

Reference: The Feynman Lectures in Physics, Vol. III