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CRYSTAL PLANES:

Indexing of Planes

A helpful feature to remember is that the smaller the absolute value of h in the Miller index {hkl}, the more nearly
parallel the set of planes is to the X-axis (the {h00} planes are an exception). The same is true of k and the Y-axis,
and | and the Z-axis. When h = 0, the planes intersect the X-axis at infinity, so the {Okl} planes are parallel to the X-
axis. Similarly, the {hOI} planes are parallel to the Y-axis and the {hk0} planes are parallel to the Z-axis.

Planes in the bcc lattice. (a) 01 1 planes. (b) 01 2 planes. (c) 101 plane.(d)110planes.(e)111
planes .
Note that the index O indicates that a plane is parallel to the corresponding axis.



Distance between lattice planes

Consider the {hk0} planes of a square lattice built from a unit cell with sides of length a (Figure 1). The
separation between the lattice planes is equal to the perpendicular distance from the (hk0) plane to the
origin. Expressions for the sine and cosine of the angle ¢ are found by considering the sides of the two
right-angle triangles shown in the figure 1.
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The length of the hypotenuse of the lower triangle is a/h because a Miller index h indicates that the
plane intersects the a-axis at a distance a/h from the origin. Likewise, the hypotenuse of the upper
triangle is a/k. Then, because sin’ + cos’ = 1, it follows that
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which can be rearranged by dividing both sides by d7, into

1 h*+ K

2 2
Ao a

By extension to three dimensions, the separation of the {hkl} planes, dhkl, of a cubic lattice is given by

1 h? + K* + I?
df 1 a?
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dhkl == m .......

Wherea=b=c anda ==y =90°

Or, Separation of planes in Cubic lattice

The corresponding expression for a general orthorhombic lattice (one in which the axes are mutually
perpendicular, but not equal in length) is the generalization of this expression:

1 h? K?

12 . ] . .
% — 2 + e Separation of planes in Orthorhombic lattice

Wherea# b #c¢c anda=f=y=90°

The corresponding expression for a general tetrahedral lattice is,

+ 5 e Separation of planes in Tetrahedral lattice

Wherea=b#c¢ and a==y=90°

Solved problem 1: Calculate the separation of (a) the {123} planes and (b) the {246} planes of an
orthorhombic unit cell with a =0.82 nm, b =0.94 nm, and ¢ = 0.75 nm.

Solution: For an orthorhombic lattice,
1 h? + k? 4 1?
T2 2Tz 2
b a b c
1 17 22 32

2
= + + =22.0 nm
d?,; 0822 ' 0942 ' 0.752

Or,

Or, d123 =0.21 nm
Similarly, dys =0.11 nm

The ratios of the interplanar distance of different faces in the three types of cubic lattices

(i) Simple cubic lattice:
1 1
leO . dllO . d111 =1: ﬁ : \/_§ =1:0.707 : 0.577

(ii) Body-centred cubic lattice:

1 1 1
dzoo . d110 . dzzz = E . \/_E : ﬁ =1:1.414:0.577
(iii) Face-centred cubic lattice:
1 1

dzoo . dzzo . d111 = % = =1:0.707 :1.154
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MEASUREMENT OF DIFFRACTION ANGLE ( 0)

The measurement of diffraction angle,8, required for Bragg equation can be done in the following method:
The powder method (Debye and Scherrer, 1916).

Powder Method

In this method the crystalline material contained in a capillary tube is placed in the camera containing a film strip
(Figure below). The sample is rotated by means of a motor. The X-rays pass through the gap between the ends of the

film.

Powder Method

The powdered sample contains small crystals arranged in all orientations. Some of these will reflect X-rays from
each lattice plane at the same time. The reflected X-rays will make an angle 26 with the original direction. Hence on
the photo are obtained lines of constant 8. From the geometry of the camera, 6 can be calculated for different crystal
planes. The interplanar distance can be calculated using Bragg’s equation from this angle, 6.

Reflected
Incident beam
beam

Angle made by the reflected beam with incident beam.



Structure of Sodium Chloride

Each sodium ion is surrounded by six chloride ions and each chloride ion is clustered by six sodium ions. The co-

ordination number for this crystal lattice is six as required by simple cubic type. In this cubic system, the planes can

be passed through the atoms haviang Miller indices (200), (220) or (111) and the relative spacings for the unit cell of
a a

a face-centred cubic lattice are , > \/_ and NG while it is a,\/_ and for simple cubic and = ,\/_ and NG for

body-centred cubic lattice. For face centred cubic lattice,

a

dzoo dzzo d111 2 2\/— \/___ 1:0.707:1.154 ......cceuenee. (1)
The first order reflections from (200), (220) and (111) planes in case of sodium chloride was observed at the
glancing angles 5.9°, 8.4° and 5.2° respectively. From Bragg equation nA= 2dsind, we have

_ na
2sin6

Since n =1 and A is the same in each case, the ratio of the spacings parallel to the three principal planes are
1 1 1 1 1 1
da0o : d220 : din1 = (5.9)  sin (8.4) sin (5.2) 0.103  0.146  0.0906 1:0.705:1.137 .......{2)

This agrees well the theoretical ratio for face-centred cubic lattice as shown in equation (1). Thus, on the basis of
defraction data, sodium chloride is found to have face-centred cubic lattice which is shown in figure 2.
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Figure 2

Structure of Potassium Chloride

Structure of KCI was studied by using Bragg’s spectrometer. The intensities of ionization currents were
determined for glancing angles and the current intensities were plotted against glancing angles. The first
order spectrum from (100), (110) and (111) planes of KCl was observed at the glancing angles 5.38°,
7.61° and 9.38° respectively.



1.1 1 1, 1 1

codigo : digo i ding = : : = : :
100 + 110 - F111 7 311 5.38° * sin7.61°  sin9.38°  0.0938  0.1326 ~ 0.1620

=1:0.704: 0.575

Now for a simple cubic lattice , dyog : d110 : d111 =1 :0.707 : 0.575 ( Theoretical value)

It, therefore follows that KCl has a simple cubic lattice.

Solved problem 2:

Calculate the separation between the (a) 100 planes, (b) 111 planes, and (c) 121 planes in a
cubic lattice whose unit cell length is 529.8 pm.

Solution: the separation between planes. For the 100 planes,
1 R HE+P 1
d> a’ "~ (529.8 pm)?
d = 529.8 pm
For the 111 planes,
| e o e o 3
da? a® ~ (529.8 pm)?
d = 305.9 pm
For the 121 planes,
1 R+ 6
d* a® (529.8 pm)?
d =216.3 pm

Solved problem 3:

Chromium crystallizes as a body-centered cubic structure with a density of 7.20 g-cm™ at

20°C. Calculate the length of a unit cell and the distance between successive 110, 200, and 111
planes.

Solution:

First, find the length of a unit cell of chromium:

V— = m 2(51.996 g-mol™!)
=4 = T (6.022 x 10® mol )(7.20 g-cm )
a = 288.4 pm
For 110 planes: 1 141

d’, " (288.4 pm)>
d,,, = 203.9 pm
1 4
d, (2884 pm)>
d,y, = 144.2 pm
For 111 planes: 1 1+14+1
4%, (288.4pm)’
A = 166 5 nm

For 200 planes:



Solved problem 4:

. The observed Bragg diffraction angle of the second-order reflection from the 222 planes of a
potassium crystal is 6 = 27.43° when X-radiation of wavelength A = 70.926 pm 1s used. Given
that potassium exists as a body-centered cubic lattice, determine the length of the unit cell and the
density of the crystal.

Solution:

We can use the Bragg equation for a cubic unit cell

n2A (k4 K+ 1%
4q*

_ [12(70.926 pm)*

B [ sin?27.43°

sin*@ =

] = 533.4 pm

The molar mass of potassium is 39.10 g-mol ™", and the body-centered cubic lattice has two atoms
per unit cell. The density of the crystal is thus

2(39.098 g-mol™)

Density = m/v = 57 % 102 mol 1)(533.4 x 10~ cm)’

=0.8558 g-cm™

Solved problem 5:

The unit cell of topaz is orthorhombic with a = 839 pm, b = 879 pm, and ¢ = 465 pm.
Calculate the values of the Bragg X-ray diffraction angles from the 110, 101, 111, and 222 planes.
Take the wavelength of the X-radiation to be A = 154.433 pm.

Solution:

Use the Bragg equation for the first-order diffraction angle:
dy . :
A=12 (—) sinf = 2d sinf
n

We now find d by substituting the values of hk! and a, b and ¢ into the expression

I S

L P E
The values for d, sin 6, and 6 for each set of planes are tabulated below.

d/pm  sinf 6

110 606.9 0.1272 7.309°
101 406.7 0.1899 10.94°
111 369.1 0.2092 12.08°
222 184.6 04183 24.73°



Specific Heat of Solid:

Coefficient of thermal expansion and compressibility of solids

The dependence of the volume of a solid on temperature at constant pressure can be expressed by the
equation
V=Vo(l+at) .eeeeeireenn (1)

where t is the celsius temperature, V, is the volume of the solid at 0 °C, and « is the coefficient of
thermal expansion. Any particular substance has different values of a in the solid state. The value of a is
constant over limited ranges of temperature. For solids, a is always positive. If the data are to be
represented with precision over a wide range of temperature, it it necessary to use an equation with
higher powers of t:

V=Vo(l+at+bt’+ -« v) i (2)
where a and b are constants.

In Eqg. (1), V, is a function of pressure. Experimentally, it is found that the relation between volume and
pressure is given by

V2R A IR (I ) ) O (3)

where V, is the volume at 0 °C under one atmosphere pressure, p is the pressure in atmospheres, and K
is the coefficient of compressibility, which is a constant for a particular substance over fairly wide ranges
of pressure. The value of k is different for each solid substance. The necessary condition for mechanical
stability of a substance is that Kk must be positive.

According to Eq. (3) the volume of a solid decreases linearly with pressure. The values of k for solids are
extremely small, being of the order of 10 "° to 10 "> atm ~". If we take x = 10 ">, then for a pressure of
two atmospheres, the volume of the condensed phase is, by Eq.(3), V=V [1 - 10° >(1)] . The decrease in
volume in going from 1 atm to 2 atm pressure is 0.001 %. Because moderate changes in pressure
produce only very tiny changes in the volume of solids, it is often convenient to consider them to be

incompressible (k= 0) in the first approximation.

Heat capacity of solids

The heat capacity, C, of a system is the ratio of the heat added to the system, or withdrawn from the
system, to the resultant change in the temperature:

C = AQ/AT =dQ/dT [J/deg]
Usually C is given as specific heat capacity, c, per gram or per mol. Heat capacity is a measure of the
ability of the material to absorb thermal energy.

Dulong — Petit’s law

The constant value of the heat capacity of many simple solids is called Dulong — Petit’s law. In 1819
Dulong and Petit found experimentally that for many solids at room temperature, ¢, = 3R = 25 JK 'mol™.



Limitations:

Some solid elements show large deviations from this rule and the specific heat capacity changes with
change in temperature.

Einstein’s theory of heat capacities

Einstein considered a model in which atoms in a solid vibrate independently of each other. Each
vibration can be considered as a simple harmonic oscillator. Since oscillation is independent in the x, y
and z directions, for N atoms there are 3N independent oscillators, each vibrating independently at
frequency v,.

The energy levels of the harmonic oscillators are given by

& =hv.(v+ %), v=0,1,2..

Assuming the oscillators are in thermal equilibrium at temperature T, the partition function (Z) for a
single oscillator is

X

1 _
Z=3% e Py =y oBhve (+3) = o7 Ype V= :Z_x where, x = Bhv,.
In the above, we have used the fact that Yo X™ = = [ In our case, X = ex]

1-X
We can use the partition function to find the mean energy of oscillator

hv,

dlnZ 0 x
- [ eﬁhve -1

] L
(By= =5 = =53~ In(—e )| = Shve+

The energy of the 3N oscillators in the N-atom solid is

E = 3N(E) = 3N [ hve + -] = 3N[§hve + %] (As,B = )

eBhve— 1
ekBT_ 1

The heat capacity at constant volume is therefore

=), =3 (55), G7)

hve )2 ekBT

Or, CV = 3NkB (k T
B

or, Cy=3R (I:’;)Z




Equation (1) is known as Einstein’s equation.

or, C,=3R (9T£)2 e, 2)

hve . - . , . .
Where 85 = % is known as ‘Einstein temperature’, which is different for each solid, and reflects the
B

rigidity of the lattice.

From equation (2)

x?e*
Cv =38R
Where, x = ZV;
B

At the high temperature limit, when T >> 6g, X < 1 and the Einstein heat capacity reduces to Cy =3R (the
Dulong and Petit law). [prove by setting e* ~1+x in the denominator]

At the low temperature limit, when T < B¢, X » 1 and Cy = 3R(9E/T)2 e o8/ , which goesto 0 as T
decreases. [Prove by setting e* -1~ e*in the denominator for large x].

Limitations:

At lower temperatures, the calculated values (from Einstein equation) fall more rapidly than the
experimental values. This disagreement is due to Einstein’s assumption that all the atoms oscillate with
the same frequency, v., whereas in fact they oscillate over a range of frequencies from zero upto a
maximum value.
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