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CRYSTAL PLANES: 

Indexing of Planes 

A helpful feature to remember is that the smaller the absolute value of h in the Miller index {hkl}, the more nearly 

parallel the set of planes is to the X-axis (the {h00} planes are an exception). The same is true of k and the Y-axis, 

and l and the Z-axis. When h = 0, the planes intersect the X-axis at infinity, so the {0kl} planes are parallel to the X-

axis. Similarly, the {h0l} planes are parallel to the Y-axis and the {hk0} planes are parallel to the Z-axis. 

 

Planes in the bcc lattice. (a) 0 1 1 planes . (b) 0 1 2 planes. (c) 1 0 1 plane . (d) 1 1 0 planes. (e) 1 1 1 

planes . 

Note that the index 0 indicates that a plane is parallel to the corresponding axis. 

 



Distance between lattice planes 

Consider the {hk0} planes of a square lattice built from a unit cell with sides of length a (Figure 1). The 

separation between the lattice planes is equal to the perpendicular distance from the (hk0) plane to the 

origin. Expressions for the sine and cosine of the angle ϕ are found by considering the sides of the two 

right-angle triangles shown in the figure 1. 

 

 
Figure 1 
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The length of the hypotenuse of the lower triangle is a/h because a Miller index h indicates that the 

plane intersects the a-axis at a distance a/h from the origin. Likewise, the hypotenuse of the upper 

triangle is a/k. Then, because sin2ϕ + cos2ϕ = 1, it follows that 

 

 
     

 
 
 

   
     

 
 
 

   

 

which can be rearranged by dividing both sides by     
  into 

 

 

    
 

  
     

  
 

 

By extension to three dimensions, the separation of the {hkl} planes, dhkl, of a cubic lattice is given by 

 
 

 

    
 

  
           

  
 



Or,                                                     
  

         
    ……. Separation of planes in Cubic lattice 

                                                                                                  Where a = b = c   and           

The corresponding expression for a general orthorhombic lattice (one in which the axes are mutually 

perpendicular, but not equal in length) is the generalization of this expression:                    

 

    
   

  

   
  

   
  

    ………Separation of planes in Orthorhombic lattice 

                                              Where a            and           

The corresponding expression for a general tetrahedral lattice is,  

 

    
   

       

   
  

     ……....Separation of planes in Tetrahedral lattice 

Where a = b       and              

Solved problem 1: Calculate the separation of (a) the {123} planes and (b) the {246} planes of an 

orthorhombic unit cell with a = 0.82 nm, b = 0.94 nm, and c = 0.75 nm. 

Solution: For an orthorhombic lattice,  

 

    
   

  

  
 

  

  
 

  

  
 

Or,                                             
 

     
   

  

      
  

      
  

      = 22.0 nm-2 

Or, d123 = 0.21 nm 

Similarly, d246 = 0.11 nm 

The ratios of the interplanar distance of different faces in the three types of cubic lattices 

(i) Simple cubic lattice:  

d100 : d110 : d111 = 1: 
 

  
  

 

  
  = 1 : 0.707 : 0.577 

(ii) Body-centred cubic lattice: 

d200 : d110 : d222 = 
 

 
 : 

 

  
  

 

   
 = 1 : 1.414 : 0.577 

(iii) Face-centred cubic lattice: 

d200 : d220 : d111 = 
 

 
 : 

 

   
  

 

  
 = 1 : 0.707 : 1.154 



MEASUREMENT OF DIFFRACTION ANGLE (  ) 

The measurement of diffraction angle, , required for Bragg equation can be done in the following method: 

 The powder method (Debye and Scherrer, 1916). 

Powder Method 

In this method the crystalline material contained in a capillary tube is placed in the camera containing a film strip 

(Figure below). The sample is rotated by means of a motor. The X-rays pass through the gap between the ends of the 

film.  

 
 

The powdered sample contains small crystals arranged in all orientations. Some of these will reflect X-rays from 

each lattice plane at the same time. The reflected X-rays will make an angle 2  with the original direction. Hence on 

the photo are obtained lines of constant  . From the geometry of the camera,  can be calculated for different crystal 

planes. The interplanar distance can be calculated using Bragg’s equation from this angle,  . 

 

 



Structure of Sodium Chloride  

Each sodium ion is surrounded by six chloride ions and each chloride ion is clustered by six sodium ions. The co-

ordination number for this crystal lattice is six as required by simple cubic type. In this cubic system, the planes can 

be passed through the atoms haviang Miller indices (200), (220) or (111) and the relative spacings for the unit cell of 

a face-centred cubic lattice are , 
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  for simple cubic and 
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body-centred cubic lattice. For face-centred cubic lattice, 

d200 : d220 : d111 = 
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 = 1 : 0.707 : 1.154  ………………..(1) 

The  first order reflections from (200), (220) and (111) planes in case of sodium chloride was observed at the 

glancing angles 5.9º, 8.4º and 5.2º respectively. From Bragg equation  n= 2dsin, we have 

d = 
 

     
 

Since n = 1 and is the same in each case, the ratio of the spacings parallel to the three principal planes are 

d200 : d220 : d111 = 
 

         
  

 

         
  

 

         
 = 

 

      
  

 

     
  

 

      
 = 1 : 0.705 : 1.137 ……..(2) 

This agrees well the theoretical ratio for face-centred cubic lattice as shown in equation (1). Thus, on the basis of 

defraction data, sodium chloride is found to have face-centred cubic lattice which is shown in figure 2. 

 

 
                                                                Figure 2 

 

Structure of Potassium Chloride 

Structure of KCl was studied by using Bragg’s spectrometer. The intensities of ionization currents were 

determined for glancing angles and the current intensities were plotted against glancing angles. The first 

order spectrum from (100), (110) and (111) planes of KCl was observed at the glancing angles 5.38o, 

7.61o and 9.38o respectively. 



 

 d100 : d110 : d111 = 
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 = 1 :  0.704 :  0.575 

Now for a simple cubic lattice , d100 : d110 : d111 = 1 : 0.707 : 0.575 ( Theoretical value) 

It, therefore follows that KCl has a simple cubic lattice. 

Solved problem 2:  

 
Solved problem 3: 

 



Solved problem 4: 

 
Solved problem 5: 

 



Specific Heat of Solid: 

Coefficient of thermal expansion and compressibility of solids 

The dependence of the volume of a solid on temperature at constant pressure can be expressed by the 

equation 

V = V0 (1 + αt)   ………………………(1) 

where t is the celsius temperature, Vo is the volume of the solid at 0 °C, and α is the coefficient of 

thermal expansion. Any particular substance has different values of α in the solid state. The value of α is 

constant over limited ranges of temperature. For solids, α is always positive. If the data are to be 

represented with precision over a wide range of temperature, it it necessary to use an equation with 

higher powers of t: 

V = V0(1 + at + bt2 + ٠٠٠٠)  …………………….. (2) 
where a and b are constants. 

In Eq. (1), Vo is a function of pressure. Experimentally, it is found that the relation between volume and 

pressure is given by 

V0 =   
  [1 - (P – l)] ………………………(3) 

where V0 is the volume at 0 °C under one atmosphere pressure, p is the pressure in atmospheres, and  

is the coefficient of compressibility, which is a constant for a particular substance over fairly wide ranges 

of pressure. The value of  is different for each solid substance. The necessary condition for mechanical 

stability of a substance is that  must be positive. 

According to Eq. (3) the volume of a solid decreases linearly with pressure. The values of  for solids are 

extremely small, being of the order of 10 - 6 to 10 - 5 atm - 1. If we take  = 10 - 5, then for a pressure of 

two atmospheres, the volume of the condensed phase is, by Eq.(3), V =   
  [1 - 10- 5(1)] . The decrease in 

volume in going from 1 atm to 2 atm pressure is 0.001 %. Because moderate changes in pressure 

produce only very tiny changes in the volume of solids, it is often convenient to consider them to be 

incompressible (= 0) in the first approximation. 

Heat capacity of solids 

The heat capacity, C, of a system is the ratio of the heat added to the system, or withdrawn from the 

system, to the resultant change in the temperature: 

C = ΔQ/ΔT = dQ/dT  [J/deg] 

Usually C is given as specific heat capacity, c, per gram or per mol. Heat capacity is a measure of the 

ability of the material to absorb thermal energy. 

Dulong – Petit’s law 

The constant value of the heat capacity of many simple solids is called Dulong – Petit’s law. In 1819 

Dulong and Petit found experimentally that for many solids at room temperature, cv ≈ 3R = 25 JK-1mol-1. 

 



Limitations:  

Some solid elements show large deviations from this rule and the specific heat capacity changes with 

change in temperature. 

Einstein’s theory of heat capacities 

Einstein considered a model in which atoms in a solid vibrate independently of each other. Each 

vibration can be considered as a simple harmonic oscillator. Since oscillation is independent in the x, y 

and z directions, for N atoms there are 3N independent oscillators, each vibrating independently at 

frequency   . 

The energy levels of the harmonic oscillators are given by  

εν = h  (ν + ½),             v = 0, 1, 2… 

Assuming the oscillators are in thermal equilibrium at temperature T, the partition function (Z) for a 

single oscillator is 

Z =        
    =             
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           where, x = βh  . 

In the above, we have used the fact that       
 

   
 
   .  [ In our case, X = e-x] 

We can use the partition function to find the mean energy of oscillator 

      
    

  
   

 

  
  

 

 
             

 

 
     

   

       
 

The energy of the 3N oscillators in the N-atom solid is 

E = 3N    = 3N  
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The heat capacity at constant volume is therefore 

CV =  
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Equation (1) is known as Einstein’s equation. 

or,               
  

 
 
 
 

 
  
 

  
  
    

   …………………….(2) 

 

Where     
   

  
 is known as ‘Einstein temperature’, which is different for each solid, and reflects the 

rigidity of the lattice. 

From equation (2) 

     
    

       
 

Where,    
   

   
 

At the high temperature limit, when T ≫ θE, x ≪ 1 and the Einstein heat capacity reduces to CV =3R (the 

Dulong and Petit law). [prove by setting ex  1+x in the denominator] 

At the low temperature limit, when T ≪ θE, x ≫ 1 and CV = 3R(θE/T)2 e−θE/T , which goes to 0 as T 

decreases. [Prove by setting ex -1   ex in the denominator for large x]. 

Limitations: 

 At lower temperatures, the calculated values (from Einstein equation) fall more rapidly than the 

experimental values. This disagreement is due to Einstein’s assumption that all the atoms oscillate  with 

the same frequency,   , whereas in fact they oscillate over a range of frequencies from zero upto a 

maximum value.  



 
 



 


